If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6b^2-10b+1=0
a = 6; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·6·1
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{19}}{2*6}=\frac{10-2\sqrt{19}}{12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{19}}{2*6}=\frac{10+2\sqrt{19}}{12} $
| 15.75+0.05h=16.53+0.13h | | y-18/10=5 | | 2z+27=71 | | c-21/12=31/2 | | z=8(12) | | 11=23-4g | | 44(a+10)=21 | | h/3+-37=-30 | | 6(2x=1)=3(x-4) | | 9x(x+6)-(3x+1)^(2)=1 | | 522=29h | | z-53/8=3 | | 3x+4(2x-5)=7x-5 | | u/6+51=43 | | 5x+7x^2=700 | | 32=4v+16 | | 116=u−341 | | 9y−12=41y−4 | | -7/5y=-5 | | 30+3c=66 | | 3d=810 | | 29q=812 | | 8v-7=25 | | 10z=770 | | 5q=825 | | 22+3p=73 | | 14-x/3=11 | | 144=12s | | 5g=685 | | 6(w-82)=42 | | 25r=550 | | m-41/4=63/4 |